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1 Introduction

In this paper we consider the numerical solution of minimum time optimal control
problems. They describe tasks in which the objective is to transfer a system from an
initial state to a speci�c target set in minimum time so that the given control and
state constraints are satis�ed. Such tasks are common, for example, in aerospace
optimization, see Refs. [14], [16] and [17].

The necessary conditions for the solution of an optimal control problem constitute a
multipoint boundary value problem. The set of di�erential and algebraic equations
de�ning this problem often seem complicated, not only due to nonlinearity of the
equations, but also because of various discontinuities the solution should satisfy. For
a comprehensive example, see Ref. [5], where a complex multipoint boundary value
problem related to an optimal aircraft landing in the presence of windshear is solved.

A suitable method to solve such problems is the well known multiple shooting
method, see, e.g., Ref. [15]. The method reduces the boundary value problem to the

1



solution of a series of algebraic equations and initial value problems with partially
unknown initial conditions that are solved by Newton iteration.

When multiple shooting is applied to a boundary value problem that consists of
necessary optimality conditions, a challenging problem is to �nd a converging initial
estimate of the state and adjoint trajectories for the iteration, see, e.g., Ref. [4],
p. 214. In some cases, incresing the number of shooting points may help, but in
general, di�erent parameter continuation or homotopy methods must be employed
(for an advanced study of continuation methods, see Ref. [1]). In these methods,
the problem is embedded into a family of problems characterized by a continuation
parameter. If the parameter is chosen appropriately, the family will contain at least
one problem, corresponding to a certain value of the parameter, that can be solved
with a simple initial guess. The solution of the original problem is then found via
gradually changing the value of the parameter and hence following a homotopy path

through the family. In this process, the solution of the previous problem serves as
the initial guess for the following one.

The important issue is to select the continuation parameter correctly. Arbitrary pa-
rameter selection may result in a homotopy path that terminates before the solution
is achieved. Probably the best results are achieved, if the continuation parameters
are somehow naturally related to the problem at hand, see Refs. [5] and [12] and
references cited therein. Furthermore, more than one continuation parameter may
have to be used during the process.

Intuitively, in minimum time problems the �nal time is a most natural continuation
parameter. We show that this is indeed the case by converting the terminal time
minimization into a sequence of terminal cost minimizations with �xed �nal time.
When the �xed �nal time is selected small enough, the solution of the problem
is obviously obtained with a simple initial guess. An appropriate one dimensional
search procedure is then used to �nd the unknown �nal time of the original problem.
The �nal time corrections given by the search are used as continuation steps.

Stepwise time interval continuation has been used for �xed time interval problems,
see Refs. [10], [11] and also [7]. In the following we present the method and a
systematic way to update the �nal time. We then apply the method to two numerical
examples concerning minimum time 
ight of an aircraft.

2 The continuation method

Consider a minimum time optimal control problem P1:

P1: min �T

s.t. _x(t) = f(x(t); u(t); t); t 2 [0; T ]; x(0) = x0

�( (x(T ); T )� d2) = 0

L(x(t); u(t)) � 0; R(x(t)) � 0;
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where x(t) 2 Rp and u(t) 2 Rm. The functions f , L and R are Rp, Rl and Rr

valued, respectively, and are assumed continuously di�erentiable. The function  :
Rp�R 7! R de�nes the target set, and d is a parameter. We assume  (x(� ); � ) > d2

in the region of interest. The scaling parameters � and �, to be discussed later, are
positive and do not a�ect the optimal solution of P1.

Let x(�); T be the trajectory and the terminal time solving P1. Then consider
embedding P1 into a family of problems as follows. For each � 2 [0; T ] we de�ne
the following terminal cost minimization problem P2 with �xed �nal time � :

P2: min  (x(� ); � )� d2

s.t. _x(t) = f(x(t); u(t); t); t 2 [0; � ]; x(0) = x0

L(x(t); u(t)) � 0; R(x(t)) � 0:

For each � 2 [0; T ], denote the solution trajectory of P2 by x�(t), t 2 [0; � ]. The
necessary conditions of an optimal solution for problems P1 and P2 can be found,
e.g., in Ref. [4]. If � = T , certain sign conditions hold, and the parameters � and �
are selected appropriately, these necessary conditions coincide. Thus, P2 can be used
to separate the determination of the optimal �nal time and the optimal trajectory
of P1. In addition, the dimension of P2 is smaller than that of P1, which can result
in a larger convergence domain for P2.

The terminal cost minimization problems P2 constitute a family of problems related
to the original minimum time problem through the continuation parameter � . The
function  de�nes a homotopy path. For a su�ciently small �nal time, a good
initial guess for the solution of P2 can be obtained, for example, by using a one-
step di�erence approximation for the state derivative and by solving the resulting
ordinary nonlinear optimization problem. The solution is then passed as an initial
guess to the next problem with a larger �nal time.

What distinguishes the method from the ordinary continuation is that the correct
�nal value of the continuation parameter is not known in advance. Therefore a
systematic way to update the parameter is required. Starting with a small initial
value of � it may be preferable to use a �xed continuation stepsize. Nevertheless, in
the vicinity of T , a search procedure is required to �nd a � satisfying the terminal
condition of P1. Here we use the Newton iteration (see also Ref. [6], where the
secant method is used):

�k+1 = �k �
 (xk(�k); �k)� d2

 0(xk(�k); �k)
; (1)

where k in xk is an abbreviation for x�k . The total time derivative  0(xk(�k); �k) of
the homotopy path is given by

 0(x�(� ); � ) =
@

@x
 (x�(� ); � )T

d

d�
x�(� ) +

@

@�
 (x�(� ); � ); (2)

where
d

d�
x�(� ) := lim

�!0

x�+�(� + �)� x�(� )

�
: (3)
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Figure 1: A sketch of the components of the total time derivative  0(x(� ); � ).

For small �, the di�erence quotient above is approximately

x�+�(� ) + _x(� )� � x� (� )

�
�!

@x�
@�

(� ) + _x�(� ); (4)

as � approaches zero. The �rst term on the right arises because also the optimal tra-
jectory changes as � is varied. Note that the calculation of this term would require
solving a linear boundary value problem. Nevertheless, numerical calculations sug-
gest that the term gives only a negligible contribution compared to the term _x�(� ).
One reason is that @x�=@� (� ) tends to be almost perpendicular to the gradient of
the terminal cost (@=@x) (x�(� ); � ), whereas the vector _x� (� ) is often nearly parallel
to it, see Figure 1. This being the case, the term (@x�=@� )(� ) can be omitted in (2)
when applying (1), and an approximate update for � can be obtained analytically.

To summarize, the continuation proceeds as follows:

1. Choose a su�ciently small �nal time �0 and solve P2. Set k = 0.

2. Using the obtained solution, update �k by

�k+1 = �k �
 (xk(�k); �k)� d2

~ 0(xk(�k); �k)
; (5)

where
~ 0(xk(�k); �k) =

@

@x
 (x�(� ); � )T _x� (� ) +

@

@�
 (x�(� ); � ): (6)
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3. If the change in �k is small enough, terminate. Otherwise, solve P2 using �k+1,
set k := k + 1 and return to 2.

3 Numerical examples

In the following we illustrate the method in constructing minimum time trajectories
of an aircraft by two numerical examples, a minimum time climb, and minimum time
descent with a dynamic pressure constraint. In the former problem, a trajectory
that brings an aircraft to a given altitude and velocity in minimum time is sought,
see, e.g., the seminal work in Ref. [3]. The latter problem is computationally more
challenging, as the pressure constraint will likely induce a singular control arc.

Aircraft model

Slightly simpli�ed the equations of motion of a point-mass-like aircraft in a vertical
plane are given as

_y = v cos 
 (7)
_h = v sin 
 (8)

_
 =
g

v
(n � cos 
) (9)

_v =
1

m
f�F (h;M(h; v))�D(h; v;M(h; v); n)g � g sin 
 (10)

_m = �c�F (h;M(h; v)): (11)

where y, h, 
, v stand for range, altitude, 
ight path angle and velocity, respectively,
see Ref. [8]. The aircraft mass m is also included as a state variable, because 
ight
times of several hundred seconds reduce it considerably. Above, F denotes the
maximum available thrust and D the drag force. The fuel 
ow is assumed to depend
linearly on the applied thrust through the coe�cient c. The Mach number is denoted
by M(h; v), or brie
y M , and the (constant) acceleration of gravity by g.

The 
ight path angle of the aircraft is controlled with the load factor n, the ratio
of the lift force and aircraft weight. The threat of structural damages requires the
loadfactor to lie in the interval [nmin; nmax]. The velocity is controlled with the
throttle setting � 2 [0; 1]. In the computations we use nmin = �9 and nmax = 9.

Modern �ghter aircraft reduce the induced drag by de
ecting the leading edge pro�le
of the wing, see Refs. [6, 13]. This shifts the polar so that the minimum drag is
attained with a small positive lift coe�cient. The assumption of quadratic polar for
small lift coe�cients will still be reasonable provided that the shift is accounted for
with a positive coe�cient a, i.e.,

D(h; v;M; n) =
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CD0
(M)Sq(h; v) +K(M)(

nmg

Sq(h; v)
� a)2Sq(h; v); a > 0:

Here S and q(h; v) = 1=2%(h)v2 denote the reference wing area and dynamic pres-
sure, respectively. Above, %(h) is the density of the air. The quantities CD0

(M) and
K(M) stand for the zero-lift and induced drag coe�cients of the aircraft. They are
approximated in conjunction with the parameter a by adjusting a rational polyno-
mial to the tabular data using least squares �tting. The thrust data is approximated
in a similar way, using a two dimensional polynomial. The thrust and drag data
represent a generic high-performance �ghter aircraft. The Mach number and the air
density are computed according to the ISA standard atmosphere.

Minimum Time Climb

For computing the minimum time climb we ignore the range equation (7). The
optimal range can be integrated afterwards using the optimal velocity and 
ight
path angle histories. Hence, the state vector is x(t) = [h(t); 
(t); v(t);m(t)]T. The
initial conditions of the example,

h(0) = 6; 000 m 
(0) = 0�

v(0) = 154 m/s � Mach 0:5 m(0) = 10; 000 kg

refer to a subsonic cruise situation. The objective of the climb is to satisfy the �nal
condition

 (x(T ); T )� d2 = (h(T )� hf )2 + b(v(T )� vf)
2 � d2 (12)

with hf = 14; 000 [m] and vf = 472 [m/s], which corresponds to Mach 1.6, in
minimal time. The �nal mass and 
ight path angle are free. The parameter b is
used to balance the di�erent scales of h(T ) and v(T ). We use d = 1 and b = 100.
To summarize, the problem P1 to be solved is (we omit the parameters � and � that
are of theoretical interest only)

min T

s.t. _x(t) = f(x(t); u(t)); t 2 [0; T ]; x(0) = x0

(h(T )� hf )2 + (v(T )� vf)
2 � d2 = 0

L(x(t); u(t)) = [n(t)� nmax;�n(t) + nmin; �(t)� 1;��(t)]T � 0;

where u(t) = [n(t); �(t)]T is the control vector. The state equations are given by
(8)-(11), and the initial state x0 is given above.

The subproblems of the iteration are solved by setting up the necessary conditions
of the problem P2 and solving the resulting boundary value problems with multiple
shooting and the BNDSCO software package [9]. The iteration is continued until
the relative change of the �nal time is at most 1%. The iterates in (M;h) plane
together with the contours of constant energy altitude h + v2=2g and the contours
of the Speci�c Excess Power of the aircraft, de�ned as

SEP (h;M; n) = v(F (h;M)�D(h; v;M; n))=mg
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Figure 2: The sequence of trajectories and corresponding �nal times produced by
the method in the (M;h) plane together with the contours of the energy altitude
(dashed lines) and the Speci�c Excess Power (solid lines) of the aircraft. The �nal
times are 40, 62, 106, 120, 129, 134, 137 and 138 seconds. Note the qualitative
di�erence between the 62 sec. and 106 sec. solutions.

for n = 1 are presented in Figure 2. (Note that once M and h are known in the
above, v can be eliminated.) The initial value of � , 40 seconds, is the largest �nal
time with which the problem P2 can be solved using a simple linear initial guess.
The method produces seven corrections to the �nal time, and the optimal �nal
time is 138 s. The optimal trajectory in the (y; h) plane is shown in Figure 3. It
may be noted that the actively controlled wing reduces the optimal �nal time by
approximately 6 %.

The Speci�c Excess Power is actually the time derivative of the energy altitude. If
n is constantly assumed 1 and m is assumed constant, the minimum time trajectory
is found to be the locus of the points where the tangents of the contours of the
energy altitude and the Speci�c Excess Power coincide. This method is known as
the energy state approach to aircraft trajectory optimization, see [6] and references
cited therein.

Minimum time descent

For this problem, the mass of the aircraft is assumed constant, since the 
ight time
will be considerably smaller. Thus, the state vector is now x(t) = [y(t); h(t); 
(t); v(t)]T.
In addition, we impose a limit for the maximal value of the dynamic pressure a�ect-
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Figure 3: The optimal minimum time climb trajectory in the (y; h) plane.

ing the aircraft,
R(x(t)) := q(h(t); v(t))� qmax � 0: (13)

The objective of the problem is to 
y from the initial state

y(0) = 0 m 
(0) = 0�

h(0) = 3; 000 m v(0) = 385 m/s � Mach 1:2

to the �nal condition

 (x(T ); T )� d2 = (y(T )� yf)
2 + (h(T )� hf )2 � d2

with yf = 10; 000 [m] and hf = 2; 000 [m] in minimum time, without exceeding the
dynamic pressure limit. We use the value qmax = 80; 000 [Pa] and set again d = 1.
Here the problem P1 is

min T

s.t. _x(t) = f(x(t); u(t)); t 2 [0; T ]; x(0) = x0

(y(T )� yf)
2 + (h(T )� hf )2 � d2 = 0

L(x(t); u(t)) = [n(t)� nmax;�n(t) + nmin; �(t)� 1;��(t)]T � 0; R(x(t)) � 0;

where u(t) = [n(t); �(t)]T is the control vector. The state equations are now given
by (7)-(10), the function R is given in (13) and the initial state x0 is speci�ed above.

The activation of the state variable inequality constraint induces a jump in the ad-
joint trajectories (e.g. [4]). Furthermore, it is known that this particular constraint
leads to a singular control interval, which may induce another jump in the adjoint
trajectories. The switching times and the jump magnitudes must be solved simulta-
neously with the other boundary conditions. The correct sequence of unconstrained,
constrained and singular solution arcs, also known as the switching structure, must
therefore be known in advance.

As the �nal time is increased, the switching structure of the solution changes, which
makes the continuation di�cult. Therefore we select the following continuation
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Figure 4: The sequence of trajectories of the second example. The �nal times are 1,
5, 10, 16, 18, 21.3, 23, 24.5, 24.8 and 24.93 seconds. The dynamic pressure constraint
is introduced at � = 16 seconds.

strategy: Using the continuation method, we �rst generate an unconstrained solution
with a suitably large �nal time. We then introduce the constraint by estimating
the switching parameters from the unconstrained solution, and �nally complete the
continuation with the constrained problem. Thus we only need to work with one
switching structure. One could also apply continuation with respect to qmax, but
this would �rst lead to a di�erent switching structure that does not contain the
singular arc.

The computation is started with � = 1 seconds. The value of � = 16 seconds, is
considered large enough for the introduction of the dynamic pressure constraint.
Overall, 11 iterations complete the solution, and the �nal time equals 24.93 seconds.
The optimal trajectory and the iterates are presented in Figure 4. The correctness
of the switching strucure of the solution should in principle be checked in the end
of the continuation. Here the check can be omitted, since the correct structure is
known from elsewhere.

4 Summary and discussion

We present a continuation method to calculate minimum time trajectories and a
systematic way to update the unknown �nal time. The method is demonstrated with
two minimum time aircraft trajectory problems. In both examples, convergence of
the boundary value problem solver is always achieved with the previous solution
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as the initial guess. This is not necessarily coincidental but can be related to the
behaviour of the solution. The size of the Newton iteration step depends on the
derivative ~ 0(x(� ); � ). A small derivative, resulting in a large correction, re
ects a
moderate change of the objective function. Accordingly, the qualitative change of
the solution trajectory is likely to be small, and the previous solution more likely
belongs to the convergence domain of the following problem. In contrast, a large
derivative and thus a small correction are due to rapid changes, which would also
predict convergence di�culties if larger steps are taken.

The connection between range maximization and time minimization being in a way
equivalent was pointed out in Ref. [14]. Our method could be seen as a generalization
of this connection to a case where the terminal constraint is a nonlinear function of
the �nal states.

Finally, it should be noted that the proposed continuation approach is not restricted
to indirect solution methods. Also direct methods (see Ref. [2]) in which the dynam-
ics is discretized and the problem is turned into an ordinary optimization problem
can bene�t from the approach.
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